The Precision Reactor Oscillation and SPECTrum Experiment

PROSPECT

James T. Matta

Oak Ridge National Laboratory

On behalf of the PROSPECT Collaboration

The Reactor \bar{v}_e Flux Anomaly Evidence For A Sterile Neutrino?

- Reactor measurements previously agreed with $\overline{\mathbf{v}}_e$ flux models
- Re-evaluation of the flux model by Mueller/Huber showed them to be consistently low
- The deficit is suggested to be evidence for is evidence for a sterile neutrino flavor

The Reactor \bar{v}_e Flux Anomaly Evidence For A Sterile Neutrino?

- Reactor measurements previously agreed with $\overline{\mathbf{v}}_e$ flux models
- Re-evaluation of the flux model by Mueller/Huber showed them to be consistently low
- The deficit is suggested to be evidence for is evidence for a sterile neutrino flavor

PR©SPECT_{\(\forall\)}

Reactor $\overline{\mathbf{v}}_e$ Spectral Anomaly "The Bump"

- Recent θ_{13} experiments at LEU reactors observe an excess between 4-6 MeV
 - Problems with one fissile isotope? Multiple isotopes?

A Sterile Neutrino or Erroneous Models? ORNL Efforts to Revise β- Decay Data

Recently the nuclear physics community has been revisiting the β^- decay branching ratios of the top $\overline{\nu}_e$ spectrum contributors.

B.C. Rasco et al. PRL **117**, (2016) 092501

PR©SPE

A Sterile Neutrino or Erroneous Models? Flux Anomaly Depends On Fuel Composition

0.32

0.34

0.24

0.26

0.28

0.30

 F_{239}

Daya Bay has **not** shown that neutrino oscillations don't play a role. Disagreements could be a combination of effects: issues with the $\bar{\nu}_e$ yield from ²³⁵U **and** new physics

 F_{235}

0.57

5.75 Daya Bay Average 5.70 0.30 0.34 0.26 0.28 0.32 0.24 F_{239}

Daya Bay Collaboration Phys. Rev. Lett. 118, 251801 (2017)

Model (Rescaled)

0.54

0.51

0.36

A Sterile Neutrino or Erroneous Models? Flux Anomaly Depends On Fuel Composition

Daya Bay has **not** shown that neutrino oscillations don't play a role. Disagreements could be a combination of effects: issues with the $\bar{\nu}_e$ yield from ²³⁵U **and** new physics

Daya Bay Collaboration Phys. Rev. Lett. 118, 251801 (2017)

The High Flux Isotope Reactor

PROSPECT:

HFIR

- 85 MW Thermal Power Research Reactor
- ~93% enriched ²³⁵U fuel
- Very compact core (h=0.6m d=0.4m)
- Very near access available
- 24 day cycle means no ²³⁹Pu buildup (<0.5%)
- ~50% duty cycle allows good background char

PROSPECT

- Model independent search for neutrino oscillations into eV-scale sterile states
- Precision measurement of an HEU reactor spectrum with the best energy resolution to date

- Complement existing LEU reactor measurements
- We also hope to:
 - Measure total absolute reactor flux
 - Observe $\bar{\mathbf{v}}_e$ from spent nuclear fuel
- ~160k IBD/year
- Resolution $4.5\%/\sqrt{E}$
- S/B of 3:1
- Most precise ²³⁵U spectrum measurement
- Compare reactor $\bar{\mathbf{v}}_e$ spectrum models
- Provide a benchmark for future reactor $\bar{\nu}_e$ experiments

Detector Design

- Optically divided into 14x11 identical segments
 - i.e. 154 detectors
- Low mass optical separators
 - Minimal dead material
- Double-ended readout
- Access for calibration in-situ

Oscillation Search

- Relative spectrum measurement between independent detectors
- Segmentation gives clear baseline dependency
- Independent of reactor flux and spectrum models
- Relative measurement and movement minimize systematic errors

R&D Progression

PROSPECT-0.1

Aug 2014 Spring 2015

5cm 0.1liter LS cell

PROSPECT-2

*under assembly

Dec 2014 Feb 2015

PROSPECT-20

March 2015

1m 23 liter LS cell

PROSPECT-50

February 2016

PROSPECT Phase I

2017*

154×25 liter LS segments 15×15×120cm

Construction

- Construction of components is progressing quickly
- Deployment to occur in 2017

PMT Housing Production Progress

*OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Site Preparation

PR©SPECT_▽

- Installation of shield wall for background reduction
- Leveling of floor for detector movement system

Time Variations

Summary

- PROSPECT will:
 - Make a precision ²³⁵U spectrum measurement, complementing LEU measurements.
 - Make a model independent search that will cover the sterile neutrino oscillation best-fit point at better than 3σ in one calendar year
 - Cover favored regions at 3σ in 3 years
 - Test ²³⁵U as the source of the 4-6MeV "bump"
- Detector construction is proceeding, deployment and first data taking will begin before the end of 2017
- Preparations for deployment are in full swing
- Backgrounds, reactor on and off, have been characterized

The PROSPECT Collaboration

4 National Labs 10 Universities 68 Collaborators

Supported by:

prospect.yale.edu

BACKUP

The Pandemonium Effect

- Fragmentation of decay strength at high excitation energy due to high level density.
 - Low efficiency high resolution experiments overestimate the branching to low energy levels.

 PARENT (Z,N)

• Shifts $\overline{\mathsf{v}}_e$ spectra up

Detector Design: Detection

Why a Movable Detector?

Oscillation Search

Spectrum Measurement

Background Reduction

Local shielding joining reactor wall

Multi-layer passive shielding

PR SPECT

Background Characterization

Time Variations

Time Variations

